JEC Conference
Composites as a Worthy Alternative to Traditional Materials in the Construction Industry

Paris, March 16, 2017

The future of building: The growing use of composites in construction and architecture
A study commissioned by the JEC Group

Presenter: Andrew Mafeld
Managing Director
Connectra Global KB, Sweden
www.connectra.biz
Introduction to Connectra: Consulting in business development of materials

<table>
<thead>
<tr>
<th>Assignments Completed</th>
<th>Over 140 client-tailored assignments since 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clients served in</td>
<td>W.Europe, E.Europe, N.America and Asia</td>
</tr>
<tr>
<td>Materials covered include</td>
<td>Composites, Thermoplastics, Thermosets, Reinforcement Fibres, Fabrics, Non-Wovens, Insulation Materials, Glass, Metals, Wood, Foams and Specialties</td>
</tr>
<tr>
<td>End use markets covered</td>
<td>Aerospace, Automotive, Truck, Renewable Energy, Construction, Marine, Industrial Equipment, Pipes, Recreation & Other</td>
</tr>
</tbody>
</table>
Introduction to Connectra:
Consulting in business development of materials

| Type of project tailored to clients’ needs: | • **Market studies** (global, regional, national, regional or by industry sector)
• Facilitation of Business Development Strategies
• **Business Plan** synthesis
• **Commercial Due Diligence** for acquisitions
• Technology auditing / cost modelling / Competitive Assessment
• Expertise sharing / Training / Company Meeting facilitation |

*The future of building: The growing use of composites in construction and architecture
JEC World, Paris, March 16, 2017*
The future of building: the growing use of composites
A study commissioned by JEC

Topics covered

- Introduction
- Composites in Architectural Projects
- Composites Systems for whole or partial, new build or refurbishment
- Composite Elements for new build or refurbishment
- Composites for reinforcement and repair
- Conclusions
The future of building: the growing use of composites

Introduction – topics covered

- The Purpose, Scope and Targeted Audience
- The Definition and Scope of Composites in the Construction of Buildings
- Three major segments – categories of building
- Grouping the many composite applications in the construction of buildings
- Many good reasons for using composites in the construction of buildings
The Purpose, Scope and Targeted Audience

▪ The Purpose of the project
 – Spreading knowledge about composites in the construction of buildings
 – Growing the use of composites in the construction of buildings

▪ The scope of the project
 – The Geographic Scope - Global
 – The Time Scope – Existing, Cutting edge and Futuristic applications

▪ Targeted Audience
 – Participants in the Building Industry Supply Chain
 – No prior knowledge of composites assumed
 – Examples documented enough to be of interest to existing players
Grouping the many composite applications in the construction of buildings

- Few limits of human ingenuity and creativity
- 68 examples have been chosen to illustrate the multitude of applications
- Four distinct sub-segments naturally appeared

<table>
<thead>
<tr>
<th>Composite Application sub-segment</th>
<th>Number of examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural projects</td>
<td>20</td>
</tr>
<tr>
<td>Systems and Sub-Systems in Composites for New Building and Refurbishment</td>
<td>24</td>
</tr>
<tr>
<td>Composite Elements for New Build or Refurbishment</td>
<td>13</td>
</tr>
<tr>
<td>Composite Systems for Reinforcement and/or Repair of Buildings</td>
<td>11</td>
</tr>
<tr>
<td>Total number of examples</td>
<td>68</td>
</tr>
</tbody>
</table>
The future of building: the growing use of composites
A study commissioned by JEC

Topics covered

- Introduction
- Composites in Architectural Projects
- Composites Systems for whole or partial, new build or refurbishment
- Composite Elements for new build or refurbishment
- Composites for reinforcement and repair
- Conclusions
Key perspectives on composites in architectural projects

- Usually high profile projects
- Largest segment is public buildings, often linked to design competitions
- Many façade projects but also roofs, domes and pavilions
- The two most common reasons for the use of composites:
 - Freedom of design/form/aesthetics
 - often coupled to and enabled by
 - Light weight compared to traditional materials
- Other reasons for use cited:
 - Corrosion resistance
 - Low maintenance
 - Translucency
 - Advantages of off-site manufacture
 - Ability to pass the necessary fire tests
Many leading architects now use composites

<table>
<thead>
<tr>
<th>Architect Firms cited in the book</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM Architecture, Melbourne, Australia</td>
</tr>
<tr>
<td>Benthem Crouwel Architekten (BCA), San Jose, California, USA</td>
</tr>
<tr>
<td>BIG - bjarke ingels group, Copenhagen, Denmark</td>
</tr>
<tr>
<td>Cheshire Architects, Auckland, New Zealand.</td>
</tr>
<tr>
<td>Dar Al-Handasah, HQ in Beirut, Lebanon</td>
</tr>
<tr>
<td>Erick van Egeraat Associated Architects, Rotterdam, The Netherlands</td>
</tr>
<tr>
<td>Foster & Partners, HQ London, UK</td>
</tr>
<tr>
<td>Gensler, San Francisco, CA, USA</td>
</tr>
<tr>
<td>Kengo Kuma, Japan</td>
</tr>
<tr>
<td>Kraaijvanger Urbis, Rotterdam, Netherlands</td>
</tr>
<tr>
<td>Mecanoo, HQ Delft, Netherlands</td>
</tr>
<tr>
<td>Omar Kbiri (original idea) working together with unnamed architects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Architect Firms cited in the book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Team: Institute for Computational Design - Prof. Achim Menges and Institute of Building Structures and Structural Design - Prof. Jan Knippers, Stuttgart University, Germany</td>
</tr>
<tr>
<td>R Studio Arquitectura, Valencia, Spain</td>
</tr>
<tr>
<td>Safdie Architects - Moshe Safdie, Singapore/Toronto</td>
</tr>
<tr>
<td>Sandover Pinder of Perth, Australia</td>
</tr>
<tr>
<td>Skidmore, Owings, and Merrill, Chicago, USA</td>
</tr>
<tr>
<td>Snøhetta, HQ Oslo, Norway</td>
</tr>
<tr>
<td>Spanish architect Vicente Peidró, Spain</td>
</tr>
<tr>
<td>Walt Disney Imagineering, Glendale, CA, USA</td>
</tr>
<tr>
<td>WATG-Urban-Architecture-studio, Chattanooga, TN, USA</td>
</tr>
<tr>
<td>Wilmotte & Associates, Paris, France</td>
</tr>
<tr>
<td>Zaha Hadid Architects, London, UK</td>
</tr>
</tbody>
</table>
San Francisco Museum of Modern Art – 2016
Architects: Snøhetta, Oslo, Norway
Moulders: Kreysler & Associates, CA, USA
The Glass Lantern, Apple Zorlu, Istanbul, Turkey
Architects : Foster and Partners
Materials : Carbon Fibre/Epoxy Panels
Producer : PCT, Dubai
Some key observations on the architectural projects

▪ In all cases off-site pre-fabrication was a major advantage for multiple reasons including quality and efficiency
▪ The combination of light weight and on-site multi-panel assembly makes transportation around the world possible
▪ A number of specialised moulders with a full service beyond just moulding has arisen
▪ Installation expertise is also important
▪ Light weight of the composite elements means less requirement on the foundations of the building and any façade support structure
▪ 2016 saw the unveiling of many such projects with composites
▪ Composites are penetrating building codes and passing fire tests that broaden their application possibilities
The future of building: the growing use of composites
A study commissioned by JEC

Topics covered

- Introduction
- Composites in Architectural Projects
- Composites Systems for whole or partial, new build or refurbishment
- Composite Elements for new build or refurbishment
- Composites for reinforcement and repair
- Conclusions
Key perspectives on composite systems for either the whole or part of a building

Whole buildings

- Over the years, there have been a wide range of buildings, that have been developed using composites
- Mainly residential but some commercial and public (e.g. schools)
- The range includes:
 - Complete buildings e.g. houses, schools, constructed from kits, often using pultruded parts
 - Complete houses assembled from prefabricated modules
 - Complete GRP houses moulded off site and transported
 - 3D-printed buildings using cement based composites
- Uses include permanent residence, temporary residence, offices, schools, & other permanent & temporary structures
Luxury Portable Buildings
Producer: Inpod, Mumbai, India
Material: GRP
Concept 3D Printed Freeform House
Architects: WATG Urban Architecture, Chicago
Manufacturer: Branch Technology (printing to start in 2017)
House to be located in Chattanooga, TN, USA

Photo: © WATG Urban Architecture
Key perspectives on composite systems for either the whole or part of a building

Parts of buildings

- In addition to whole buildings, a wide range of composite systems are used for parts of buildings e.g. roofs, walls, floors
- Applications include all three areas of public, residential and commercial buildings
- Reinforcement of concrete using carbon fibre grids is growing fast
- There are several very large volume, long standing applications which are composites (in the broad definition): BUR roofing, shingles and decking
- Natural fibres can also be used in appropriate geographical zones
- Thermoplastic systems have also been launched in this area
Precast CF grid reinforced concrete panels and pillars
Producer: The Altus Group
Material: Concrete with CF grid (supplied by Chomarat)
Composite Basement Systems
Producer: Composite Panels Systems, USA with Fiber Tech Industries making the panels
Material: GRP
Some key observations on the composite systems for whole or parts of buildings

- Part of the challenge for composites in the field of construction of buildings is the fragmented and local nature of the building industry.
- The global aerospace and automotive industries have a limited number of OEMs, limited product range, global manufacturing platforms etc.
- Having said that, composites are finding applications where their advantages are used to the most.
- Light weight and off site pre-fabrication again appear as key reasons why composites are gaining penetration.
- Light weight and off-site fabrication mean faster construction, lower costs for heavy lifting gear, less material waste than on-site production, less labour on site, less weather impact to name but a few advantages.
- For whole house systems, it is important to provide a total solutions which includes the electrical and plumbing systems.
The future of building: the growing use of composites
A study commissioned by JEC

Topics covered

- Introduction
- Composites in Architectural Projects
- Composites Systems for whole or partial, new build or refurbishment
- Composite Elements for new build or refurbishment
- Composites for reinforcement and repair
- Conclusions
Key perspectives on composite elements for buildings

- This is the sub-segment where composite moulders can use their creativity to a maximum
- A very wide range of elements are made from composites:
 - Translucent roofing panels, door skins, window frame elements, bathroom/shower room elements or even pods, beams, façade elements, special walls, wall coverings, domes, architectural textiles etc. etc.
- Growing applications include gypsum panels with glass veil facings and glass veil based flooring
- New applications with potential include GRP and WPC walls with built in anti bacterial properties for clinics and hospitals
- Light weight beams made from CF or Natural fibre
- Domes can be made from GRP or GRC
GRP hotel bathroom pod
Producer: Suzhou Cozy House Equipment Co, Suzhou, China
Material: SMC
Light weight concrete beams
Producer : C3 Carbon Concrete Composite Composite e.V, Dresden, together with Betonwerk Oschatz, Germany
Material: CF reinforced concrete beam
– same properties but 50% of the weight
The future of building: the growing use of composites
A study commissioned by JEC

Topics covered

- Introduction
- Composites in Architectural Projects
- Composites Systems for whole or partial, new build or refurbishment
- Composite Elements for new build or refurbishment
- Composites for reinforcement and repair
- Conclusions
Key perspectives on composites for reinforcement and repair

- This final sub-segment highlights the applications of composites in reinforcement applications (as in reinforcing concrete via composite rebar) or in repair/strengthening.
- Significant volumes of carbon fibre fabric/epoxy used to strengthen floors and pillars either pre- or post-earthquake
- New ways of strengthening buildings against earthquake shock using intelligent textiles or novel form of CF
Temporary Church Roof after earthquake
Producer: TopGlass, Osnago, Italy
Material: Glass fibre/polyester resin
Strengthening of pillars
Producer: Mitsubishi, Japan
Material: Carbon Fibre fabric/ Epoxy
The future of building: the growing use of composites
A study commissioned by JEC

Topics covered

- Introduction
- Composites in Architectural Projects
- Composites Systems for whole or partial, new build or refurbishment
- Composite Elements for new build or refurbishment
- Composites for reinforcement and repair
- Conclusions
Conclusions

- As has been shown, composites are already established in a wide variety of applications in the construction of buildings.
- There are a certain number of trends that are likely to further increase the chances of composites growing. These include:
 - Continued growing demand for housing due to urbanisation (90% in Asia/Africa)
 - Continued growing demand for affordable inner city housing
 - Growing awareness of composites in general
 - Growing understanding of the benefits of light weight and off-site prefabrication
 - 3D-printing and its fast development
 - Composites penetrating building codes and passing severe fire tests
 - Increasing use of Building Information Modelling (BIM)
- The importance of active participation in standards’ bodies and in promotion of composites within the whole industry chain cannot be emphasised enough.
- Overall the prospects for composites in building construction look very positive.
Thank you for your attention

Presented by Andrew Mafeld
Managing Director

Connectra Global KB
Smedjegatan 37
352 46 Växjö
Sweden
Tel : +46 720 166 200
E-mail: info@connectra.biz
www.connectra.biz

Capability Presentation about Connectra
available upon request