Carbon Fiber Composites
Solutions for High Volume Manufacturing

Dr. Joseph J. Laux
Director Business Development (EU) – Lightweight Composites
Magna Exteriors

March 2017
Management Structure

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don Walker</td>
<td>Chief Executive Officer</td>
<td></td>
</tr>
<tr>
<td>Vince Galifi</td>
<td>Chief Financial Officer</td>
<td>Magna Exteriors, Seating, Mirrors, Closures and Cosma</td>
</tr>
<tr>
<td>Tom Skudutis</td>
<td>COO Magna Exteriors, Seating, Mirrors, Closures and Cosma</td>
<td></td>
</tr>
<tr>
<td>Swamy Kotagiri</td>
<td>Chief Technology Officer</td>
<td></td>
</tr>
<tr>
<td>Jim Tobin</td>
<td>Chief Marketing Officer, President Magna Asia</td>
<td></td>
</tr>
<tr>
<td>Marc Neeb</td>
<td>Chief Human Resources Officer</td>
<td></td>
</tr>
<tr>
<td>Guenther Apfalter</td>
<td>President Magna Europe</td>
<td></td>
</tr>
<tr>
<td>Frank Seguin</td>
<td>EVP Corporate Projects & Strategy Development</td>
<td></td>
</tr>
<tr>
<td>Jeff Palmer</td>
<td>Chief Legal Officer</td>
<td></td>
</tr>
<tr>
<td>Mike Sinnaeve</td>
<td>VP Operational Improvement & Quality</td>
<td></td>
</tr>
<tr>
<td>Mike Bisson</td>
<td>President</td>
<td>SEATING</td>
</tr>
<tr>
<td>Grahame Burrow</td>
<td>President</td>
<td>EXTERIORS</td>
</tr>
<tr>
<td>John O’Hara</td>
<td>President</td>
<td>Closures Vision Systems Roof Systems</td>
</tr>
<tr>
<td>John Farrell</td>
<td>President</td>
<td>BODY & CHASSIS</td>
</tr>
<tr>
<td>Jake Hirsch</td>
<td>President</td>
<td>POWERTRAIN</td>
</tr>
<tr>
<td>Swamy Kotagiri</td>
<td>President</td>
<td>ELECTRONICS</td>
</tr>
<tr>
<td>Guenther Apfalter</td>
<td>President</td>
<td>VEHICLE ENG Contract MFG Fuel Systems</td>
</tr>
</tbody>
</table>

Disclosure or duplication without consent is prohibited

May 2016
Management Structure

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don Walker</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>Vince Galifi</td>
<td>Chief Financial Officer</td>
</tr>
<tr>
<td>Tom Skudutis</td>
<td>COO Magna Exteriors, Seating, Mirrors, Closures and Cosma</td>
</tr>
<tr>
<td>Swamy Kotagiri</td>
<td>Chief Technology Officer</td>
</tr>
<tr>
<td>Jim Tobin</td>
<td>Chief Marketing Officer, President Magna Asia</td>
</tr>
<tr>
<td>Marc Neeb</td>
<td>Chief Human Resources Officer</td>
</tr>
<tr>
<td>Guenther Apfalter</td>
<td>President Magna Europe</td>
</tr>
<tr>
<td>Frank Seguin</td>
<td>EVP Corporate Projects & Strategy Development</td>
</tr>
<tr>
<td>Jeff Palmer</td>
<td>Chief Legal Officer</td>
</tr>
<tr>
<td>Mike Sinnaeve</td>
<td>VP Operational Improvement & Quality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Bisson</td>
<td>President</td>
</tr>
<tr>
<td>Grahame Burrow</td>
<td>President</td>
</tr>
<tr>
<td>John O’Hara</td>
<td>President</td>
</tr>
<tr>
<td>John Farrell</td>
<td>President</td>
</tr>
<tr>
<td>Jake Hirsch</td>
<td>President</td>
</tr>
<tr>
<td>Swamy Kotagiri</td>
<td>President</td>
</tr>
<tr>
<td>Guenther Apfalter</td>
<td>President</td>
</tr>
</tbody>
</table>

SEATING

- Mike Bisson
- Grahame Burrow

EXTERIORS

- John O’Hara

VISION SYSTEMS

- John Farrell

ROOF SYSTEMS

- Jake Hirsch

BODY & CHASSIS

- Swamy Kotagiri

POWERTRAIN

- Guenther Apfalter

VEHICLE ENG

- Guenther Apfalter

FUEL SYSTEMS
Not just bumpers!

CF Hood
- 50 K tow fiber epoxy resin
- 40% weight reduction

Hollow Vane AGS
- Increased performance
- Weight reduction
- In molding assembly

Radar Covers
- Electronics integration
- Multi-material molding
- Enabling technology

Energy Management
- Energy beams
- Crush cans
- Structural joining - RIW

Invisible PDC
- Improved styling
- Electronics integration
- Capital reduction

UV Cure
- Snap cure clear coats
- Energy savings
- Shortened paint line

Sub-Frame
- Structural materials
- Chassis applications
- Multilateral joining

Multi-material Body
- Cross group collaboration
- Multi-material integration
- Weight reduction

Door Modules
- Cross group collaboration
- Multi-material integration
- Weight reduction

Active Underbody
- Active aerodynamics
- Drag reduction
- Improved efficiency

Roof Modules
- CF Thermoplastic structures
- Adhesives
- Reinforcements

Liftgates
- IR welding
- Adhesives
- Reinforcements
- Composite frame

Capital reduction

Cross group collaboration

Multi-material integration

Weight reduction

Shortened paint line

Energy savings

Multi-material integration

Improved styling

Multilateral joining

Chassis applications

Active Underbody

Drag reduction

Improved efficiency

Sub-frame

Cross group collaboration

Multi-material integration

Weight reduction

Active Underbody

Drag reduction

Improved efficiency

Roof Modules

CF Thermoplastic structures

Adhesives

Reinforcements

Liftgates

IR welding

Adhesives

Reinforcements

Composite frame

Energy Management

Energy beams

Crush cans

Structural joining - RIW

Invisible PDC

Improved styling

Electronics integration

Capital reduction

Sub-frame
High Performance Composites

Lightweight as enabler for new functionalities in the vehicle
Composites

CF hood
Structural thermoplastic composites
Multi-material body design
Structural CF SMC
First ever, CF Compression Molded Class A Hood

- Delivered fully painted, assembled, high volume capable
 - 2016 Cadillac ATS-V – painted all colors
 - 2016 Cadillac CTS-V – painted all colors with decorative exposed weave inner panel
Class A Hood Assembly

OUTER
- 1.2 mm thick painted class “A”
- 6 Layer unidirectional material at [0/90/0]s
- Mass = 2.5 Kg

INNER
- 0.8 mm thick reinforcement
- 4 layer unidirectional material at [0/90]s
- CTS-V includes an exposed weave appearance (1.05 mm total)
- Mass = 1.9 Kg
Advantages

• Mass reduction of 20 – 30% versus Aluminum
• Improved high speed flutter and lift off
• Improved dent and ding performance
• Exceeds pedestrian protection requirements
• Material is corrosion resistant
Material Innovations Deployed on CF Hood

- Step change improvement in molding cycle over traditional autoclave & out of autoclave processes
 - Process eliminates manual lay-up of prepreg sheets typical of other processing technologies
- Proprietary fast cure, high Tg, pre-preg material enables higher volume applications
- Pre-preg material utilizes low cost industrial grade carbon fiber
- Two patents pending for pre-form / material handling and molding tool design
Next Steps for Magna CF Class A Development

• Continue to develop resin chemistry for:
 – Improved surface quality
 – Lower cost
 – Improve cure
 – 2 – 3 minute molding cycle times

• Prove out CF-SMC as an inner reinforcement to improve cost and cycle times
Multimaterial Body Design: Project Vision

TARGETS:

• Attractive concepts for lightweight structures in derivates:
 – Low investment
 – Low logistic & assembly costs
 – Modular lightweight design

• Joining solutions to integrate multi material parts into body structure

CONTENT:

• Testing: Implementation of multimaterial parts in our production line ➔
 Body Shop – Paint Shop – Assembly

• Assessment of mechanical properties for materials and joinings

• Design of structural part in body structure & simulation in complete body

• Simulation of materials and joining techniques

Mercedes-Benz G650 Maybach Landaulet, Source: Netcarshow

BMW 7er, Body structure, Source: BMW, Euro Car Body 2015
Challenges for simulation

Composites and hybrid materials

- Anisotropic or quasi isotropic behavior
- Multi material and hybrid design
- Optimization of layers
- Energy absorption by fine fragmentation (CFRP)
- Acoustic and structural vibration validation

Material
- Isotropic behavior

Geometry
- Shell and spaceframe design

Structural Durability
- Optimization of wall thickness

Crash
- Energy absorption by buckling (Al)

Acoustic
- Virtual concept investigations

Light metal alloys and high strength steels
Multi material design

- warm/cold joining technology
- ~80°C heating (e.g. outer panels)
- „Black & Color - Framing“
- final assembly

Component -> BIW structure -> Paint -> BIW final -> Assembly

- welding
- ~190°C heating (e-coat)
- general assembly hang on parts

Shell- and spaceframe design
CFRP-metal hybrid structures

Motivation

CFRP enables lightweighting, and our focus is on high volume applications.

Joining of composites in body shop is challenging.

Heat resistance for e-coating is limited.

Source: Kroll et al, TU Chemnitz
CFRP-metal hybrid structures
Investigations

Pre-screening of CFRP materials for “material tool box” finished

Mechanical pre-screening

Ultrasonic testing

Flexural testing

Tensile testing

E-coating & paint capability

No constant coating of material, no paint interactions with tested materials

Dynamic-Mechanical-Analysis for e-coating influence & heat resistance
CFRP-metal hybrid structures
Investigations: DTMA testing

DTMA according to ISO 6721-7: Torsion, f = 1Hz, ΔT/t = 2K/min

Change of G' calculated for samples after e-coating process

EP_CF Prepreg #1
- G'_0: -2%
- G'_0: -25%

E-coating

APPLICAN

- $\Delta G'_0$: 8%
- $\Delta G'_0$: 16%

EP_CF Prepreg #2
- G'_0: -10%
- G'_0: -19%

E-coating

APPLICAN

- $\Delta G'_0$: -8%
- $\Delta G'_0$: -16%

EP_CF Prepreg #3
- G'_0: -10%
- G'_0: -80%

PUR_CF Prepreg #1

- $\Delta G'_0$: 2%
- $\Delta G'_0$: 25%

E-coating

APPLICAN

- $\Delta G'_0$: -2%
- $\Delta G'_0$: -25%

Author: Dr. J. J. Laux; S. Kaufmann
Disclosure or duplication without consent is prohibited
CFRP-metal hybrid structures

Investigations: Joining

Metal-CFRP Joining

Evaluation of different in-mold joining technologies

Manufacturing of metal-CFRP plates for testing issues and evaluation of manufacturing behaviour

Evaluation of contact corrosion behaviour

Investigation of thermal warpage due to difference in CLTE

Solutions for metal-CFRP concepts are being investigated
CFRP-metal hybrid structures

Investigations: Flexural tests of hybrid samples

Flexural samples: 80 x 25 x 2,7 mm,

Upside: Alu After pressing + e-coating

Author: Dr. J. J. Laux; S. Kaufmann
Disclosure or duplication without consent is prohibited
CFRP-metal hybrid structures

Potential applications

Picture of Metal-CFRP hybrid component, currently in progress

Possible applications using functional integration

Source: Bentley, Euro Car Body 2016
Meet and exceed material requirements for global automotive 2020 and beyond.
Future of Alternative Material Usage

• Innovative ways to optimize materials and processes and reduce production costs for future high volume production use
Please visit us at booth Hall 6 P12